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ABSTRACT 

Let (7 be a finite group. Attach to (7 the following two graphs: F - -  its 

vertices are the non-central conjugacy classes of G, and two vertices are 

connected if their sizes are not coprime, and F* - -  its vertices are the prime 

divisors of sizes of conjugacy classes of G, and two vertices are connected 

if they both  divide the size of some conjugacy class of (7. We prove that  

whenever F* is connected then its diameter is at most 3, (this result was 

independently proved in [3], for solvable groups) and F* is disconnected 

if and only if G is quasi-Frobenius with abelian kernel and complements.  

Using the method of that  proof we give an alternative proof to Theorems 

in [1],[2],[6], namely that  the diameter of F is also at most 3, whenever the 

graph is connected, and that  F is disconnected if and only if (7 is quasi- 

Frobenius with abelian kernel and complements.  As a result we conclude 

that  both F and F* have at most two connected components.  In [2],[3] it 

is shown that  the above bounds are best possible. 

Introduct ion  and no ta t ion  

Throughou t  this  p a p e r  we shall  use the  following nota t ion :  

G = a finite group. 

Sp(G)  -= the  set of all Sylow p-subgroups  of G. 

Con(G)  - the  set of conjugacy classes of G. 

7ri - sets  of pr imes.  

* The content of this paper corresponds to a part  of the author 's  Ph.D. thesis carried 
out at the Tel Aviv University under the supervision of Prof. Marcel Herzog. 
Received May 3, 1993 
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~r(n) = the set of prime divisors of n. 

~r(A) = Ir(IAI) for any finite set A. 

p(G) -- U{ 7r (c) :  C e Con(G)}. 

F(G) = (V, E)  - -  the graph whose set of vertices, V, are the non-central 

conjugacy classes of G and two classes A, B are joined by an edge A B  E E if 

(IAI, IBt) > 1. For A B  E E and an integer n > 1 we write A ~ B if both IAI and 
n 

IBI are divisible by n. 

F*(G) - (V*, E*) - -  the dual graph whose set of vertices V* = p(G) and two 

distinct primes p, q are joined by an edge pq E E* if there is a class C E Con(G) 

such that  pq I ICI • For pq E E* and C E Con(G) we write p ~ q if both p and q 

divide ICI. 

be the induced graph obtained by restricting F(G) to For S C_ V, let F(G)[ s 

the set S, i.e. 

r ( a ) l s  -- (S, E n  (S × S)). 

We sometimes speak of the s u b g r a p h  S meaning F(G)Is" 

For a, b E V, let d(a, b) denote the distance between a and b in F(G) and for 

s c_ v let d(a, S) = rain{ d(a, s) : s ~ S }. Let d(G) be the diameter of r ( c ) .  

Similarly define : F*(G)lA,d*(p,q) ,d*(p,A ) and d*(a), where p,q E V* and 

A CV*.  

A group G is called q u a s i - F r o b e n i u s  if G/Z(G)  is Frobenius. The inverse 

images in G of the kernel and complements of G/Z(G)  are then called the k e rn e l  

and c o m p l e m e n t s  of G. 

It was shown in [6], and later rediscovered in [1] and [2], that F(G) has diameter 

at most 3 whenever the graph is connected, and that F(G) is disconnected if and 

only if G is quasi-~obenius with abelian kernel and complements. It also follows 

that F(G) has at most two connected components. 

In this paper we obtain some information about the structure of F*(G). Its 

vertices can be partitioned as follows : V* = A U A, so that F*(G)I A is a complete 

graph and either every vertex of h is connected to it by an edge, or F*(G)t h is 

also a complete graph. If F* (G) is connected it follows that its diameter is at 

most 3 (this result was independently proved in [3], for solvable groups). It also 

follows that  F*(G) has at most two connected components and we show that 

it is disconnected if and only if G is quasi-Frobenius with abelian kernel and 

complements. We shall also use these proofs to give alternative proofs of the 
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above mentioned results from [1],[2],[6]. It was shown in [2] and [3] tha t  the 

above bounds are best possible. 

1. P r e l i m i n a r i e s  

THEOREM 1.1 (Schur-Zassenhaus,  Hal l -Cunihin  [7]): 

(a) A group with a normal Hall 7r-subgroup is 7r-separable. 

(b) In a 7r-separable group: 

(i) Every subgroup and homomorphic image is 7r-separable. 

(ii) Every ~r-subgroup is contained in a Hall ~r-subgroup. 

(iii) All the Hall 7r-subgroups are conjugate. 

(c) ~r-separability and ~r'-separability are equivalent. 

LEMMA 1.2 (Gorenstein [4]): If  H, K are subgroups of G of relatively prime 

indices, then G = H K  and IG: H N K[ = IG: H[ . [G: K I. 

THEOREM 1.3 (N.Ito [5]): For  two distinct primes p,q if pq is not an edge of 

F*(G),  then either NG(P) = CG(P) or NG(Q) = CG(Q) where P 6 Sp(G) and 

Q 6 Sq(G), and thus G is either p- or q-nilpotent. 

LEMMA 1.4: Ira, b 6 G are commuting elements of relatively prime orders then: 

CG(ab) = CG(a) A CG(b), whence [Cl(a)l and ICl(b)[ divide ]Cl(ab)l. 

LEMMA 1.5: For any X C_ G and g 6 G, CG(X g) = CG(X) 9. 

L E M M A  1.6: In any group G : d(G) < d*(G) + 1 and d*(G) <_ d(G) + 1. 

Proof." Let A, B 6 Con(G) and p, q 6 p(G) such tha t  p ] I A] and q I[B[. Assume 

we have in F(G)  the pa th  : 

A = C 1  , , C2 , , . . . . . .  , , Cl , , C I + I = B  
Pl P2 Pz - 1 P/ 

where Ci 6 Con(G) and Pi 6 p(G). Then  in F*(G) we have the pa th  : 

P ~c1  Pl (c2 ) . . . . . .  ~ c~ ) Pl ~ q 

if p # Pl and q # p~ (otherwise the pa th  from p to q is even shorter) .  Thus  we 

conclude tha t  d*(p, q) < d*(A, B) + 1 and it follows tha t  d*(G) <_ d(G) + 1. 

Likewise, if we have in F* (G) the pa th  : 

) . . . . . .  ( ~ P l  ~ P t + l  = q P : P l  P2 (C2 Cl-1 
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then in F(G) we have the path  : 

A , ' C1 , ~ . . . . . .  , ~ Cz ~ ~ B 
Pl  P2 Pt P t+l  

and d(G) <_ d*(G) + 1 follows, l 

COROLLARY 1.7: F(G) is connected if and only if F* (G) is connected. 

LEMMA 1.8: A group G, with a subgroup H # 1, G for which: H x ~ H = 

{1} Vx ~ H, is Frobenius with a complement H and the kernel K = {1} U 

LEMMA 1.9: In any group G : p(G) = ~r(G/Z(G)). 

Proo~ Let p be a prime number. Assume p ~ p(G) and fix P • Sp(G). Let 

x 6 G; since p { ICl(x)l it follows that  Ca(x) contains a Sylow p-subgroup of G, 

so there exists g • G such that  p9 <_ Ca(x), whence x • CG(P g) = Ca(P) g. 

Since this is true for every x 6 G we have G = u g e a C a ( P )  g, which implies that  

Ca(P) = G, so P <_ Z(G) a n d p {  IG/Z(G)[. 

Conversely, if p ~ rc(G/Z(G)) then G has a central Sylow p-subgroup P.  

So P <_ Ca(x) for every x • G, thus p { Iel(x)l and p ¢ p(a). | 

If G = A × G1, where A is abelian, then F*(G1) = F*(G) and F(G1) is 

similar to F(G) with possibly more repetitions of vertices (i.e. more classes of 

the same size). So, while investigating the diameter and connectedness of F(G) 

and F*(G), we can assume, without loss of generality, that  G has no abelian 

factors and therefore p(G) = r(G) (since a central Sylow subgroup is an abelian 

direct factor). 

Let 

A(G) = { p 6 l r (G):  NG(P) # Ca(P) for every P • Sp(G) }; 

and 

A(G) - { p 6 7r(G) : NG(P) = Ca(P) for every P 6 Sp(V) }. 

When there is no danger of confusion we shall omit (G) and simply write: 

A and A. 

By Theorem 1.3, F*(G)In is a complete graph. 
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Remark 1.10: In any group G : A(G) = 7r(G'). 

Proo£" Assume p ~ A(G). Then by Burnsid,~'s Theorem, G has a semidirect 

decomposition G = P N  where P E Sp(G) is abelian and N ~G. Since G / N  ~- P 

is abelian, G'  < N and p ~ ~r(G'). Conversely, if p ~ u(G')  and P e Sp(G), then 

[P, No(P)]  _< P A G' = 1, whence N o ( P )  = Cc(P)  and p ~ A(G).  | 

COROLLARY 1.11: I f  ~(G') = 7~(G), and in particular if  G is perfect, then F*(G) 

is complete. 

Remark 1.12: If  G is perfect, then F(G) is not necessarily complete. For exam- 

ple, G = A5 × PSL(3, 2) is perfect, but it has classes of sizes 20 and 21. 

2. r*(G) 

LEMMA 2.1: Suppose a group G has two semidirect decompositions: G : H1N1 

= H2N2 where Hi are abelian Hall 7ri-subgroups, Ni are normal Hall Try-subgroups 

and 7rl A 7r2 = ~. Then G has a semidirect decomposition G = H N ,  where H is 

an abelian Hall (~rl U ~r2)-subgroup and N is a normal Hall (71" 1 U 7r2)'-subgroup. 

Proof'. Let N = N1A572. By Lemma 1.2: ]G: N I = IG: N I I ' I G :  N21, so fir 

is a normal Hall (7rl U ~r2)~-subgroup. By Theorem 1.1 G has a Hall (Th U 7r2)- 

subgroup, H,  so G = H N .  Now H ~- G I N  is isomorphic to a subgroup of 

G/N1 × G/N2 ~- H1 × 1-12, whence H is abelian. I 

Remark: In the above proof the property abetian can be replaced by any other 

group property such that  G1 × G2 has it whenever G1 and G2 do. 

COROLLARY 2.2: Every group G has a semidirect decomposition G = H N ,  

where H is an abelian Hall A(G)-subgroup and N is a normal Hall A(G)-  

subgroup. Furthermore: N o ( C o ( H ) )  = Co(H)  = No(H) .  

Proo~ Apply Lemma 2.1 consecutively. By Theorem 1.3, for every p E A G 

has a semidirect decomposition G = P N ,  where P is an abelian Sylow (Hall) 

p-subgroup and N is a normal Hall p~-subgroup. If G = PIN1 = P2N2 are two 

such decompositions for distinct Pl,P2 E A, then we proved that  G = H~N t, 

where H t is an abelian Hall {Pl, p2}-subgroup and N ~ is a normal Hall {Pl, P2} t- 

subgroup. Assuming G = P3N3 is another decomposition, we can continue this 

process using Lemma 2.1, until we get the desired decomposition - -  G = H N .  
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Since H is abelian, every Sylow subgroup P of H is characteristic in H and 

therefore normalized by any element of G which normalizes H.  Conversely, if an 

element of G normalizes every Sylow subgroup of H,  it normalizes H.  Similarly, 

an element of G commutes with H iff it commutes with every Sylow subgroup of 

H and we get: 

d e f  A 

Ya(H)  = N N a ( P )  ~ N C a ( P )  = Ca(H) 

where P runs over all Sylow subgroups of H. 

Since H ~_ Co(H), H is a normal Hall subgroup of CG(H) and is thus char- 

acteristic, whence NG(Ca(H)) < NG(H) = CG(H) and equality holds. I 

Remark: From the above we can easily deduce : N = O~(c,)(G). 

THEOREM 2.3: For every group G, the vertices of F*(G) can be partitioned as 

V* -- A(G) U A(G) and the graph is of at least one of the following types: 

Type A: F*(G) contains two (not neccessarily connected) vertex disjoint com- 

plete subgraphs - -  and F*(G)[ A. 

Type B: F*(G) contains a complete subgraph --F*(G)[n, to which every ver- 

tex is joined by an edge. 

Proof: Let G = H N  be the decomposition of Corollary 2.2, and let: ZH = 

Z(G) MH. It  is easy to see that  Ca/z ,  (gZH) = CG(g)/ZH thus: {Cla/z,  (gZH): 

g E G} = {Cle(g): g E G}, so we may assume, without loss of generality, that  

ZH = 1 and Z(G) <_ N. We recall that  F*(G)I/, is a complete graph, so let us 

deal with p E A. Let a E G and A = Cl(a). 

CLAIM 1: (]AI, IYI) = 1 if and only if a e Z(N). 

Proof." ~ Clearly N < Ca(a), so (]A], ]gl)  = 1. 

=~ Let a = al  x a~ be the decomposition of a into the product of com- 

muting elements, where al  is a A-element and a2 is a A-element. By Theorem 

1.1 a2 E N, say a2 = n, and al E H x, say al  = h x with h C H. 

By Theorem 1.1 N <_ Co(a) and by Lemma 1.4 CG(a) = Ca(h ~) N CG(n), 

so n E Z(N) and since H x < Ca(h ~) we have g ~ g  <_ CG(h~), so h ~ E Z(G) 

and al  = h = 1 follows. I 

CLAIM 2: Ifd*(p,  A) > 1 for some p E ~r(G), then r * ( ¢ ) i  A is a complete graph. 
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Proo~ Let p be such a prime and let p I ]AI, where A = Cl(a). Clearly 

(IA], ]N]) = 1, so by Claim 1 we can assume that a = n E Z(N).  

Since G = H N  and g <__ CG(n) it follows that Co(n) = (CG(n) n H)N, 

and therefore Ca(n) -- CH(n)N. 

Assume CH(n) > 1. Then there is an element h E H \ Z(G) which com- 

mutes with n. But since h and n are commuting elements of relatively prime 

orders, we have by Lemma 1.4: ]Cl(h)l , ICI(n)II]CI(hn)]. Now 1 ~ ICl(h)I ] IgI 

and we get d*(p, A) = 1, a contradiction. 

So CH(n) = 1 whence: ~r(A) = 7r(iH[) = A and F*(G)] i is thus complete. 

I 

To summarize: either d*(p, A) = 1 for every p E A or F*(G)] h is complete 

and the theorem is proved. I 

Consequently we get: 

COROLLARY 2.4: F*(G) (and so r(G)) has at most two connected components. 

COROLLARY 2.5:  IfF*(G) is connected then d*(G) < 3. 

3. r(G) 

Using the settings of §2: 

COROLLARY 3.1: If  ([AI, INI) = 1 and F(G) is connected, then there exist C E 

Con(G) for which (IAI, Iel) > 1 and (INI, ICI) > 1. 

COROLLARY 3.2: If  either A or A consists of a single prime and F(G) is con- 

nected, then d*(G) <_ 2 whence, by Lemma 1.6, d(G) <_ 3. 

THEOREM 3.3: IfF(G) is connected, then d(G) < 3. 

Proof: Let A, B E Con(G) be non-central. Consider the following three possible 

cases:  

I: (IAI, INI) > 1 and (IBI, INI) > 1. 

Since r*(a) l  a is complete we have C E Con(G) such that: (IAI, ICI) > 1 

and (IB], [CI) > 1, so d(A, B) <_ 2. 

II: (IAI, INI )=  1 and (IBI, INI) > 1. 

By Corollary 3.1 we have C E Con(G) with d(A, C) = 1 and (]CI, ]N]) > 1 

and by I d(C, B) _< 2, so d(A, B) <_ 3. 
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I I I :  (IAI, INI) = 1 and (IBI, INI) : 1. 

Let A = Cl(a) and B = Cl(b). Assume, without loss of generality, that  

o(a) = / and o(b) = qJ where p and q are primes. By Claim 1 of Theorem 2.3 

we can assume that  a, b 6 Z (N) .  

I f p  # q, then by Lemma 1.4 [AI,[B]IICI(ab)],  so d ( A , B )  < 2. 

I f p  = q, then by Corollary 3.2 we can assume that  there is a prime r 6 A, 

distinct from p. So there is an element e 6 N \ Z(G) with o(e) = r k and since 

a, b 6 Z ( N ) ,  c commutes with both. Thus by Lemma 1.4 we have the path: 

A ~ , Cl(ae) , , Cl(bc) , , B 
IAI [Cl(c)I IBI 

and d(A, B)  < 3. I 

4. F(G), F*(G) - -  t h e  d i s c o n n e c t e d  case  

THEOREM 4.1: KF*(G)  is disconnected, then G is quasi-Frobenius with abelian 

kernel and complements. 

Proo[: Since a group of Type B (in Theorem 2.3) is connected, G is of Type A 

and F* (G) consists of two disconnected components: 

F*(G)[ A and F*(G)[~ 

each of which is a complete subgraph. 

Using the notation of Theorem 2.3 define: 

ZG -- Z(G) , Z =_ Z ( N )  , CH = CG(H), and likewise assume that  Z(G) < 

N. Every element of CH n Z commutes with both H and N and is therefore 

central. Thus CH M Z = ZG. 

If a 6 G \ Z, we showed (in Claim 1 of Theorem 2.3) that  (ICl(a)l, INI) > 1 

so (]Cl(a)l, LHI)= 1. 
By Theorem 1.1, CG(a) also has a Hall A-subgroup and since [HI [ [CG(a)[, 

it is of the same order as H and thus a conjugate of H, say H x < CG(a), x E G. 

I t  follows that  a 6 CG(H x) which by Lemma 1.5 is a conjugate of CH. We 

deduce: 

(,) c= (u c .zo )uz 
\x6G 
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Therefore: 

IGIIZGI < IZl 
IGI _< ( I C H I -  IZGI) + IZl ~ ICH-----F -- 

Ial  <_ ICHIIZ____ I _ iCHZI <_ le t  
IZGI 

and equality holds. Thus there is no redundancy in (*) and therefore: 

C ~ r l C H  = Zc for e v e r y x ~ N a ( C H ) = C H  ; 

xEG / 

and taking these equations modulu Zc,  we see~ by Lemma 1.8, that C/ZG is 

Frobenius with a complement C = C H / Z c  and the kernel K = Z / Z c .  

Now 

la/Zal = ICll/,'l = IHZo/ZoIINZa/ZoI, 
and 

SO 

(IC], IKI) = (]HZa/Za], INZa/ZGI) = 1, 

~ ( c )  = ~ ( c / z c )  = ~ ( c ) u  ~ (K)  = a u  a .  

Obviously H Z G / Z c  < C and K < N Z c / Z c  so in order to show equality here 

we need only prove ~r(C) = A. Now K is abelian so if 1 # k 6 K,  then 

Cc/zc (k )  = K and if k -- xZc ,  where x 6 Z, we have that Ca(x)  _< Z. Since Z 

is abelian we have equality, so ICl(x)l = IGI/(IKIIZcl) = ICI. Thus F*(C)]~(c) 

is a complete graph which contain r*(c)lA, whence 7r(C) = A. We conclude 

that C = H Z G / Z c  and I f  = N Z c / Z c  and hence both CH ---- H Z c  and Z are 

abelian, as required. | 

Now it follows from Lemma 1.6 that: 

COROLLARY 4.2: f fF(G)  is disconnected, then G is quasi-Frobenius with abelian 

kernel and complements. 

Remark: If G is quasi-Frobenius with abelian kernel and complements, then 

obviously the graphs r(a) and r*(a) are disconnected, and if G = A x G1, 

where A is abelian, then: a / z ( a )  = (A x a l ) / ( A  x Z ( a l ) )  ~- a d Z ( a l ) .  So in 

general (without assuming anything about abelian factors) it is true that F(G) 

(equivalently r*(C)) is disconnected if and only if G is quasi-Frobenius with 

abelian kernel and complements. 
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